CHEMICALS – TOXINS, PCB, MTBE, TCE, AND THM

WHAT CHEMICALS MIGHT BE IN MY WATER?

A number of different chemicals may be found in your water, depending in part on where your water comes from. Many municipal water treatment plants use chlorine or chloramines to disinfect water, and both of these chemicals can linger and make their way into your drinking water. In addition, as disinfection chemicals break down, they may product byproducts, including trihalomethanes (THMs) – a known cancer causing agent. And while water treatment plants use filters and other methods to remove a wide range of potential contaminants, there are a significant number of unregulated chemicals in water that have not legally mandated limits.

If you get your water from a private well, the risk of chemicals in drinking water may be even higher. The water in wells comes from underground aquifers that are fed with groundwater. This water may be exposed to a wide variety of chemicals and pollutants, including pesticides, spilled fuels, and toxins that have not been disposed of properly, including prescription medications and various types of hazardous waste. Older industrial chemicals, including polychlorinated biphenyls (PCB) and (trichloroethylene) TCS, can also be found in the water in some locations.

HOW DO I KNOW IF THERE ARE CHEMICALS IN MY WATER?

It’s often very difficult to tell if there is chemical pollution in the water in your home or business. Many chemicals are very hard to detect and may show no obvious indications. Water treatment plants test for all regulated chemicals and toxins, but they typically don’t look for unregulated pollutants. If you’re concerned about your water quality, you need to have your water tested.

IS CHEMICAL POLLUTION IN WATER DANGEROUS?

Many of the chemicals in water are known as endocrine disruptors, which means that they can interfere with the hormones in living creatures. Endocrine disruptors have been linked to birth defects, developmental disorders, and the growth of cancerous tumors.

DO I NEED TO FILTER CHEMICALS FROM MY WATER?

Because many of the chemicals in drinking water can be bad for your health, it’s a good idea to use a water treatment system to remove them no matter their level. Disinfection chemicals like chlorine can make your water taste and smell bad, even if the levels are within legally allowable limits. It’s always a good idea to have your water tested for chemicals and to use the appropriate type of chemical water filter.

MORE INFORMATION ON CHEMICALS IN DRINKING WATER

Warning Dangerous ChemicalsUnfortunately, chemical pollution in water is a common problem all across the United States. A 2009 study by the Environmental Working Groupfound that millions of people in the U.S. were exposed to a variety of potentially toxic chemicals in water above the health-based guidelines. Many of these chemicals are unregulated, so there are no legal limits for how much may be found in water. In addition, water that is treated at the municipal level often has disinfection chemicals added to it, which bring with them their own problems.

HOW DO I REMOVE TOXIC CHEMICALS FROM WATER?

The best technology available for removing chemicals in water is activated carbon (GAC). This material, sometimes just referred to as “carbon” or “charcoal, ” is the recommended treatment for most of the water contaminants listed by the EPA. Carbon filters are very common and affordable, and nearly all water filtration systems include one. This means that most water filtration systems remove some amount of chemicals in drinking water, although the effectiveness of the filter is directly related to how much carbon is used and how the filter is designed.

HOW DOES GAC WORK?

Carbon filters have many tiny clusters of carbon atoms, all stacked on top of each other. These filters work through a process called adsorption, which means that the chemical molecules adhere the highly porous surface of the carbon. GAC is specially treated to give it a very high surface area, allowing lots of space for the chemicals in water to stick. In fact, just 1 pound of GAC has the surface area equivalent to up to 150 acres!

GAC can made from the carbon produced from a variety of materials, such as peanut shells, coconut shells, or coal. It can be produced in several different ways, but often the source material is heated slowly in an inert atmosphere to produce a high carbon material. The carbon is activated by passing oxidizing gases through it at extremely high temperatures, which produces the pores needed.

How effective a carbon filter is at removing chemicals in drinking water depends on several factors, including the physical properties of the GAC and what it’s made out of. In addition, the properties of the water being treated, such as its pH, temperature, and flow rate, all have an impact. Of course, the amount and types of chemicals in the water are also an important factor.

CHEMICAL WATER FILTER OPTIONS

If you need a GAC filter to remove chemicals in water, you have several options available. A variety of pitcher and faucet filters are on the market. You can also choose from countertop and undersink filters, which may be more effective. Reverse osmosis units produce exceptionally clean water, and these units typically include at least two good carbon filters before the RO membrane. You can also choose a whole house carbon filter, which uses either a backwashing tank or filter cartridge. Catalytic carbon filters are an excellent option for the removal of chloramines and other volatile organic chemicals.

It’s important to note that GAC filters can become a source of contamination if they are not replaced periodically. Chemical contaminants can build up in the filter over time, and may be released into the water in unexpectedly high concentrations. Organic matter can also build up, allowing for bacteria to grow quite quickly. As a result, it is an excellent idea to install a quantum disinfection system or ultraviolet (UV) disinfection after any carbon filters installed on well water, unless other disinfection processes (such as ozone, hydrogen peroxide, or chlorine) are used.

Shopping cart